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A nonlinear equation sys t em is derived f o r  nonstationary gas inf i l t rat ion in the presence o f  sorption, which 

is based on Leibenson's  in f i l t rat ion equation and Langmuir  adsorption kinetics.  

Sorption has a marked effect  on gas infiltration into a porous medium having a high specific surface and results 
in relaxation effects,  e.g., when natural gas or gas-condensate is extracted f rom a clay collector or in the purification 
of petroleum products or in drying and separating gases [1-5]. 

Attempts have been made to describe infiltration with sorption. In [2], a sorption flux was introduced into the 
infiltration equation, which was taken as a linear function of the gas pressure in the pores. 

In [6], observed relaxation effects were described in terms of a double structure for a porous medium,  which gave 
two nonlinear transport  equations analogous to those for the infiltration of a liquid into a jointed porous medium [7, 8]. 
Such systems have been examined in some detail and may be solved for  example by the equivalent-equation me :hod [9, 
10]. The double structure assumed in [6] greatly restricts the application of that approach because the molecular kinetic 
theory indicates that the characteristic sorption times are very short by comparison with the observed relaxation ones. 
Therefore,  it was concluded [6] that the relaxation effects were due to mass transfer (diffusion) between macroscopic 
and microscopic pores, which contained most of  the adsorbed gas. However,  we consider that the diffusion of natural 
gas, which has fairly large molecules, in clay grains with complicated surface- layer  structures should be very slow. 

There is no doubt that the [6] approach is justified, but here we consider an alternative model. We assume that 
the relaxation is due not to diffusion in a double medium but to the sorption. The gas has a complicated composition, 
as does the surface layer in the porous body (clay collector), so one gets not adsorption but in fact  chemisorptk,n,  with 
its potential barriers and strong binding to the surface. Therefore,  the characteristic exchange times may ~e very 
considerable. 

Leibenson's equation applies for  the infiltration of an ideal gas into a homogeneous porous volume on Darcy's 
law: 
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in which the source q, on the right incorporates the mass transfer between the pore volume and the surface. For 
simplicity, we use Langmuir ' s  equation for  the sorption [ 11 ]: 

dO (2) 
n,  ~ = kap (1 - -  O) - -  k d O. 

Then for qs we have 

qs = ?M [leap ( i - -  0) - -  k d 0l. (3) 

(1)-(3) form a closed system of nonlinear differential  equations for  nonstationary infiltration in the presence of s )rption. 
I f  we use the equation of state for an ideal gas, instead of the proportion of filled adsorption centers* 0, one can 

introduce the sorption pressure Pa = n*0RTT/(NAm) which is the pressure that would occur in the adsorbed gas if  it 
were distributed in the pore volume. One can also calculate the molecular concentration in unit volume of  the body: n 
in the pore volume and n s at the surface of  the pores: 

PNAm 
n R T  ' n s = n , ~ , O .  

We introduce the dimensionless pressure r/= P/Po, coordinates ~ = r /L ,  and time r = xPot /L2 , when (1)-(3) may 
be written as 

*We retain the (2) terminology, and here and subsequently we mean activated sorption. 
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Fig. 1. Dimensionless pressure r/ as a func t ion  of  
dimensionless time r, curves constructed f rom (8) for  
various fl, points f rom exper iment  [6]. 
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We examine the solution to (4). We consider  the si tuation where there are only small pressure di f ferences  in the 
porous body  relative to the absolute pressure. We put ~ = rl z and linearize (4) with respect  to ~. Then  

dTl _ A T ~ - - A ( ~ - - 0 ) ,  p - ~  = ~ - o .  (5)  

The second equat ion in (5) is readily integrated to O = a + (0p--a) exp ( - -r / f l ) ,  and for  ~ we get the unique ec uation 

(6) 
-- k~" 1 + A (0o - -  cz) exp (--~/[5). O'c 

For  gas release f r o m  a specimen under  pressure r /= r/" > 1 to the pressure r /= 1, one can neglect  the dependence  of  ~ on 
the spatial coordinates  in (6), since exper iment  [6] shows that the pressure equalizes along the specimen very  rapidly. 
Then 

a~, _ A (0o - -  a) exp (---c/13), {1~=0 = 1, 0o = ~ : '  (7) 
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SO 

= A (00 - ~) p (1 - -  exp ( - -v /p ) )  + I. (8) 

As O o - -  a is always positive and becomes zero for  a = 0 and a = 1 and attains its m a x i m u m  for  a = & = (v/~ -" - 
1)/(rf - 1), we have for  rf = 4, 2, and 1.21 correspondingly  that & --- 0.33, 0.4, and 0.48, so we conclude lhat the 

relaxation will be most  p rominen t  when the adsorption and desorpt ion occur  at approximate ly  equal rates, i.e., x ~ 0.5, 
which for  unal tered specimen parameters  is shown by (4) to be dependent  pr imari ly  on the gas pressure. 

Here fl is governed  by the length o f  the relaxation caused by the sorption; r r = 3fl, or  in dimensional  fi~rm 

tr = 3n,/(/eapo + / ~ ) ,  (9) 

is the relaxation time, Dur ing  it, ~ shows 95% o f  its possible change. (9) shows that t r is also dependen t  on the p~essure. 
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Fig. 2. Relaxation in 6 in t ime r at 
0.5, A = 300; b) for  various 
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Fig. 3. Distributions of  ~ along the specimen for  various log r (numbers 
on curves) for  A = 0 (a) and A = 300 (b); rl" = 10; a = 0.5;/~ = 1. 

I f  we assume that there are 1019 adsorbed molecules per m ~" and t r ~ l0 s sec, then kAp o + k d should be about 1016 
m'9/sec.  The total change i n ~  is A~ = A#(0o--a) = (Oo--a)"tMp~176 so this change determines A for  given a, 00, 

and/L 
Figure 1 shows curves constructed f rom (8) for  A = 0.08, a = 0.5, and various/~, along with measurements [6]. 

The ~1 for the observed points have been t ransformed with respect to the pressure values 07' = 1.37), while the log r have 
been determined by displacing the points along the abscissa to coincide with the theoretical curves (explicit 
determination of r is impossible because the experimental  parameters are incompletely given in [6]). 

For large pressure differences,  one needs to use (4). As an example,  we consider the filling of  a one-dimensional  

porous specimen whose ends are kept at constant pressures. We have 

Ox 
02 rlz - -  A [ccrl (1 - -  0) - -  (1 - -  co) 01, 

dO0 = con (1 - -  0) - -  (1 - -  o~) 0, 
dx 

n(0, ~)= 1, 0(0, %)= ~, 

n(~, 0)= 10, n(~, 1)= 1. 

(lO) 

The solutions to (10) have been derived numerically by an inexplicit difference treatment [12]. Figures 2 and 3 show 
some results. The curves in Fig. 2a show how the relaxation time for  the pressure at a certain point in the specimen 
varies with/~ for  a given A. Figure 2b shows that with a fixed/~ and various A, the relaxation times remain constant but 
the shapes of  the curves alter. For large A, the relaxation due to sorption is most prominent.  Figure 3 shows the 
distribution for  the square of  ~ in the dimensionless coordinate ~ for various times and two A. The sorption (Fig. 3b) 
results in the equil ibrium time being increased by an order of  magnitude for  the given values relative to the absence of 

sorption (Fig. 3a). 
We note some distinctive features of  our approach and [6]. 
1. As the grain size d decreases, the relaxation should weaken according to [6], since the proportion of micropore 

volumes decreases and the proport ion of macropores rises. The relaxation time should vary as d ~ [6]. With our model, 
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the relaxation is accentuated by reduced d, since the specific surface of the pores is increased, and so one gets A ~ 7 
~ 1/d. As # is independent of the grain size, t r should remain unchanged as it varies. 

2. A difference from the [6] model is that in ours one should get a marked dependence of the relaxation time 
and amplitude on pressure. 

These differences if used in tests may enable one to elucidate the relaxation mechanism due to sorption and 
select the best model. 

NOTATION 

A, o~, and/~, dimensionless parameters in (4); d, mean grain radius; k, permeability; k a and k a, adsor(~tion and 
desorption constants; L, characteristic dimension; M, gas molecular weight; m, porosity; NA, Avogadro's number; n and 
n s, gas molecule concentrations in unit volume of the body correspondingly in the volume of the pores aJ1d at the 
surfaces of them; n., maximum possible number of gas molecules per unit surface; p, pressure; Ps, sorption gressure; 
pO and po reference values of pressure and density; qs~ sorption flux; R, gas constant; r and 4, dimensi,~nal and 
dimensionless spatial coordinates; T, absolute temperature; t, time; r, dimensionless time; t r and r r, dimensi3nal and 
dimensionless relaxation times; &, value of c~ for which 0o--a is maximal; 7, proportion of surface in unit volume; rj, 
dimensionless pressure; ~ and r/', dimensionless quantities introduced correspondingly in (5) and (7); 0, proportion of 
adsorption centers occupied by gas molecules; x --- k/(2#m);/z, viscosity. A subscript 0 corresponds to initial value. 
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